Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

CONTINUOUS INTERNAL ASSESSMENT

Academic Year 2018-19

COURSE PLAN

Academic Year 2018-19

Program:	B E – Computer Science & Engineering
Semester :	7
Course Code:	15CS73
Course Title:	Machine Learning
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Nagarathna C

Academic Evaluation and Monitoring Cell

No. 29, Chimny hills, Hesarghtta Road, Chikkabanavara Bangalore – 560090, Karnataka, India Phone/Fax: +91-08023721315/ 23721477 www.skit.org.in

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	5
1. Course Outcomes	
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	-
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	-
Module – 3	15
Module – 4	
E2. CIA EXAM – 2	17
a. Model Question Paper - 2	
b. Assignment – 2	-
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	20
1. University Model Question Paper	20
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	23

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Semester:	7	Academic Year:	2018
Course Title:	Machine Learning	Course Code:	15Cs73
Credit / L-T-P:	4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	55	SEE Marks:	80 Marks
CIA Marks:	15	Assignment	1 / Module
Course Plan Author:	Nagarathna C	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content \checkmark Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

	cased-based reasoning, Reinforcement Learning: Introduction, Learning Task, Q Learning.			
5	Evaluating Hypothesis: Motivation, Estimating hypothesis accuracy, Basics of sampling theorem, General approach for deriving confidence intervals, Difference in error of two hypothesis, Comparing learning algorithms. Instance Based Learning: Introduction, k-nearest neighbor learning, locally weighted regression, radial basis function,		Used to find the Dependencies	Evaluate L5
	Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning, ML and LS error hypothesis, ML for predicting probabilities, MDL principle, Naive Bayes classifier, Bayesian belief networks, EM algorithm.		Predicting of objects, Estimating accuracy on Hypothesis.	Lá
3	Artificial Neural Networks: Introduction, Neural Network representation, Appropriate problems, Perceptrons, Backpropagation algorithm.		Weightage of Neural Network, Errors on Object	Evaluate L5
2	Decision Tree Learning: Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning.		Statistics on Objects, Predictive Modeling	Apply L3
1	Introduction: Well posed learning problems, Designing a Learning system, Perspective and Issues in Machine Learning. Concept Learning: Concept learning task, Concept learning as search, Find-S algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.	11	Classification of Machine Language, Category Learning.	Analyze L4
Mod ule	Content	Teachi ng Hours	Identified Module Concepts	Blooms Learning Levels

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

	arch. Recent developments on the concepts – publications in journais, co		
Modul	Details		Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	Tom M. Mitchell, Machine Learning, McGraw Hill Education India Edition		In Lib / In Dept
4, 5	2013		
	Microwave Devices and circuits- Liao, Pearson Education.		In Lib/ In dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Ethem Alpaydın Introduction to Machine Learning MIT press second edition	?	Not Available
2	Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning springer series in statistics 2nd edition	?	Not Available
	Statistical Learning springer series in statistics zha ealtion	2	la lib
•		?	In lib
	Concept Videos or Simulation for Understanding	-	-
C1			
C2			
C3			
C4			
C5			
C6			
C7			
C8			
C9			
C10			
010	Lab :		
D	Software Tools for Design	_	_
Е	Recent Developments for Research	_	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1 ?			
(

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Mod		Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code	Course Name	Topic / Description	Jem	Remarks	Level
1	15CS		1. Knowledge on JAVA	4		L3
3	15cs664	phython	2. Knowledge on Python	6		L3
3			3. Knowledge on Statistics / Probability	,	Plan Gap Course	L3
5			4. Knowledge on Artificial Intelligence	5		L3
-			5. Knowledge on Deep Learning		Plan Gap Course	L3
-						

Students must have learnt the following Courses / Topics with described Content ...

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level
1				
	-	-		
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
				Concept			
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	15CS73.1	classify the Artificial Intelligence	5	Classificati	Learning	Q&A	L4
		problem's for Machine Leaning		on of	/ class	(Oral)	
				Machine	discussi		
				Language.	on		
1	15CS73.2	Analyze the Category learning	6		Learning	Q & A	L4
	0, 1, 0	using candidate algorithm	-	Learning.	/ class	(Oral)	•
				Loaning	discussi	(Oral)	
					on		
	4500700	Apply the fundamentals of		Ctatistics		Franlay	
2	15CS73.3	Apply the fundamentals of	-		Learning		L3
		statistics based on the Decision		on Objects		Problem	
		Tree Learning			discussi	Set	
					on		
2	15CS73.4	Apply the data set on hypothesis	6	Predictive	Learning	Employ	L3
		space using Inductive bias		Modeling	/ class	Problem	
		modeling			discussi	Set	
					on		
3	15CS73.5	Analyze the candidate neuron's in	5	Weightage	Learning	Test	L4
		Neural networks using power of		of Neural	/ class	(Take	
		perceptrons		Network	discussi	Home)	
					on		

4		using EM Algorithm	5	accuracy	/ class discussi	(Take Home)	L4
4		Analyze the bayes belief network using EM Algorithm	5		/ class		L4
				Hypothesis			
5		Evaluate the Artificial Nural Network based on the Learning	6	Used to find the	Case Study	Small group	L5
		algorithm		Dependen	-	discussio	
5				cies		n	
-	-	Total	55	-	-	-	L2-L5

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

010.0.0	The should be use to employ 7 apply the course tearnings to		
Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Virtual Personal Assistants, Email Spam and Malware Filtering	CO1	L4
2	include directed graphs and Graphical modeling	CO2	L4
3	Used in Data mining	CO3	L3
4		CO4	L3
5	Character recognition	CO5	L4
6	Speech Recognition	CO6	L4
	Medical science: Like predicting a particular disease based on the symptoms and physical condition	CO7	L4
8	Document Classification, Information Retrieval	CO8	L4
9	Image Processing Evaluation based on particular disease	CO9	L5
	Helical-Circularly polarized radio waves for satellite communication, Parabolic- direct the radio waves in radio telescopes, Yagi-Uda-high directivity for log distance communication, Log-Periodic-Wide bandwidth UHF terrestrial TV	CO10	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod Mapping Justification for each CO-PO pair ules Level	Lev el
--	-----------

-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
				Knowledge of various machine learning approaches involves solving complex engineering problems	L
				Principles of mathematics and engineering sciences are used in various aspects of machine learning approaches	L
				Using the knowledge of supervised learning concepts, we can design and develop solutions for complex engineering problems	L
				Supervised learning and VC dimension concepts can be used to design	L
				and conduct experiments to provide valid conclusions Expertise developed, which will enable the student to become a	L
				productive member of a design team The student will become aware of the need for lifelong learning and the	L
				continued upgrading of technical knowledge Comparative study of different dimensionality reduction techniques	
				involves solving complex engineering problems Principles of mathematics and engineering sciences are used in various	L
				aspects of dimensionality reduction techniques. Knowledge of dimensionality reduction techniques can be used to	L
				design and develop solutions for complex engineering problems	
				Dimensionality reduction techniques knowledge can be used to design and conduct experiments to provide valid conclusions	
				Expertise developed, which will enable the student to become a productive member of a design team	
				The student will become aware of the need for lifelong learning and the continued upgrading of technical knowledge	
				Knowledge of theoretical foundations of decision trees involves solving complex engineering problems	
				Principles of mathematics and engineering sciences are used intheoretical foundations of decision treesto identify best split and Bayesian classifier to label data points.	L
				Knowledge of theoretical foundations of decision trees to identify best split can be used to design and develop solutions for complex	L
				engineering problems Theoretical foundations of decision treesto identify best split and Bayesian classifier to label data points knowledge can be used to design	L
				and conduct experiments to provide valid conclusions Knowledge of theoretical foundations of decision trees to identify best split and Bayesian classifier to label data points. will help understand issues and societal problems related to cybercrimes and computer hacking3	L
				Expertise developed, which will enable the student to become a productive member of a design team	L
				The student will become aware of the need for lifelong learning and the continued upgrading of technical knowledge	l
				Knowledge of classifier models applications helps in solving complex engineering problems	L
				Principles of mathematics and engineering sciences are used in various aspects of classifier models	l
				Knowledge of classifier models can be used to design and develop solutions for complex engineering problems	l
				Various classifier models knowledge can be used to design and conduct experiments to provide valid conclusions	L
				Expertise developed, which will enable the student to become a	L
				productive member of a design team The student will become aware of the need for lifelong learning and the	L
				continued upgrading of technical knowledge Study of HMM involves solving complex engineering problems	L
			-	Study of HMM involves principles of mathematics and engineering	L

15CS73

design and develop solutions for complex engineering problems	
State sequence identification and sequence emission probabilityevaluation skills can be used to design and conduct experiments to provide valid conclusions	L3
Knowledge of clustering algorithms involves solving complex engineering problems	L3
Design of clustering algorithms involves principles of mathematics and engineering	L3
Clustering algorithms can be used to design and develop solutions for complex engineering problems	L3
Clustering algorithms knowledge can be used to conduct experiments in real life problems to provide valid conclusions	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	_	Course Outcomes							ram		~				-			-
Mod	CO.#	At the end of the course										Lev						
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	15CS73.1	classify the Artificial Intelligence problem's for Machine Leaning	3	3	3	1					1			2				L4
1	15CS73.2	Analyze the Category learning using candidate algorithm	3	3	3	1					1			1				L4
2	15CS73.3	Apply the fundamentals of statistics based on the Decision Tree Learning		3	3	1					1			1				L3
2	15CS7 <u>3.</u> 4	Apply the data set on hypothesis space using Inductive bias modeling		3	3	1					1			2				L3
3	15CS73.5	Analyze the candidate neuron's in Nural networks using power of perceptrons		3	3	1					1			2				L4
3	15CS73.6	Analyze the gradient in Artificial Nural Network using Backpropagation algorithm	3	3	3	1					1			1				L5
4		Analyze the data sets on Bayes theorem	3	3	3	1					1			1				L4
4	15CS73.8	Analyze the bayes belief network using EM Algorithm	3	3	3	2					1			2				L4
5	0 ,00	Evaluate the Artificial Nural Network based on the Learning algorithm	•	3	З	3					1			2				L5
-		• • • •	3	-		2					1			2				L4
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design																

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Knowledge on Statistics	Extra classes	6 th Aug to 11 th Aug	Prof. Veerabhadra	

	and Probability	2019	Swamy, Dept. of Mathematics	
2	Knowledge on Deep Learning			
3				
4				
5				

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	Gap Topic	Area	Actions Planned		Resources	PO Mapping
ules				Planned	Person	
1						
1						
2						
2						
3						
3						
4						
4						
5						
5						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

M	D Title	Teach.		No. of	⁻ quest	ion in	Exam		CO	Levels
dı	it in the second s	Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
e	5			Asg						
1	Introduction	11	2	-	-	1	-	2	CO1, CO2	L4

COURSE PLAN - CAY 2018-19

2	Decision Tree Learning	11	2	-	-	1	-	2	CO3, CO4	L3
3	Artificial Neural Networks	11	-	2	-	1	-	2	CO5, CO6	L5
4	Bayesian Learning	12	-	2	-	1	-	2	CO7, C08	L4
5	Evaluating Hypothesis	12	-	-	4	1	-	2	CO9	L5
-	Total	57	4	4	4	5	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L4.L3
3, 4	CIA Exam – 2	15	CO5, CO6, CO7, C08	L4
5	CIA Exam – 3	15	CO9	L5
1, 2	Assignment - 1	05	CO1, CO2, CO3, CO4	L4.L3
3, 4	Assignment - 2	05	CO5, CO6, CO7, CO8	L4
5	Assignment - 3	05	COg	L5
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction	Appr Time:	11 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	classify the Artificial Intelligence problem's for Machine Leaning	CO1	L4
2	Analyze the Category learning using candidate algorithm	CO2	L4
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Well posed learning problems	C01	L2
2	Designing a Learning system	C01	L4
3	Perspective and Issues in Machine Learning	C01	L2
4	Concept learning task	C01	L3
5	Concept learning as search	C01	L3
6	Concept learning as search	C02	L2
7	Find-S algorithm	C02	L2
8	Version space	C02	L2
9	Candidate Elimination algorithm	C02	L2
10	Inductive Bias.	C02	L2
11	Inductive Bias.	C02	L3
С	Application Areas	СО	Level
1	Virtual Personal Assistants, Email Spam and Malware Filtering	CO1	L4
2	include directed graphs and Graphical modeling	CO2	L4
d	Review Questions	-	-
1	Show the significance of Machine learning by taking different problem statements	CO1	L2
2	Explain the different constraints and problems in designing the Learning system	CO1	L2
3	List the Issues in Machine Learning	CO2	L1
4	Explain the notations that are used in Concept learning.	CO2	L2
5	Apply the concept of General to Specific ordering to Hypothesis	CO2	L3
6	Analyze whether FIND-S algorithm can be used for Hypothesis.	CO2	L4
7	Analyze the compact Representation for version space from the Representation	CO2	L4
8	Illustrate the example for Candidate Elimination algorithm	CO2	L3
9	Differentiate between unbiased and biased Hypothesis.	CO2	L2
е	Experiences	-	-
1			
2			
3			
4			
5			

Module – 2

Title:	Decision Tree Learning	Appr Time:	11 Hrs
а	Course Outcomes	-	Bloom
-	The student should be able to:	-	Leve
1	Apply the data set on hypothesis space using Inductive bias modeling	CO3	L4
2	Analyze the candidate neuron's in Nural networks using power of perceptrons	CO3	L3
b	Course Schedule	-	-
lass No	D Module Content Covered	СО	Leve
12	Decision tree representation	CO3	L2
13	Appropriate problems for decision tree learning	CO3	L3
14	Basic decision tree learning algorithm, , Attribute Classifier , Examples	CO3	L3
15	Basic decision tree learning algorithm Measures, Illustrative Examples	CO3	L4
16	hypothesis space search in decision tree learning Tree Representation	CO3	L3
17	hypothesis space search in decision tree learning Examples	CO3	L3
18	Inductive bias in decision tree learning Approximate , Restriction	CO4	L3
19	Inductive bias in decision tree learning why	CO4	L3
20	Issues in decision tree learning Avoiding Overfiting , Reduced Error	CO4	L3
21	Issues in decision tree learning Rules Post Pruning Alternative Measures	CO4	L3
22	Different Attributes	CO4	L2
с	Application Areas	со	Leve
1	Used in Data mining	CO3	Leve
2	Osed in Data mining	CO3	L3
2		004	L <u>3</u>
d	Review Questions	-	-
10	Explain the Representation that is used to build the Decision Tree, with an example.	CO3	L2
11	Analyze the problems for the decision tree and its learning.	CO3	L4
12	Discuss the Basic decision tree learning algorithm, with its Attribute	CO3	L2
13	Illustrate Basic decision tree learning algorithm Measures with Examples	CO3	L3
14	Discuss the Representation used in tree in decision tree learning used for hypothesis space search	CO3	L2
15	Analyze the hypothesis space search in decision tree learning Examples	CO3	L4
16	Explain the Restriction in Inductive bias of decision tree learning with Approximate		L2
17	Explain the Representation that is used to build the Decision Tree, with an example.	CO4	l2
18	Analyze the problems for the decision tree and its learning.	CO4	L4
19	Classify Issues in decision tree learning Rules Post Pruning Alternative Measures	CO4	L4
20	Explain the Different Attributes	CO4	L2
21	Figure out the Issues in decision tree learning Avoiding Overfiting with reduced error	CO4	L4
е	Experiences	-	-
1			
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (Code:	15CS73	Sem:	7	Marks:	30	Time: 75	minute	S	
Cour	'se:	Machine L	earning				· · ·			
-	-	Note: Ans	wer any 3 c	luestions	s, each carry e	qual mar	ks.	Marks	СО	Level
1	а		the importa of Machine	-	'	e Learning	g? Discuss important	6	C01	L1
		Explain th system	e different	signing the Learning	7	C01	L2			
	С	List the Iss	ues in Mach	ine Learr	ning			2	CO1	L1
2	а	Analyze w	hether FIND	-S algorii	thm can be use	d for Hyp	othesis.	8	CO2	L4
		Analyze th Represent	,	Represen	tation for versic	on space	from the	7	CO2	L4
3		Explain th example.	e Represen	tation tha	at is used to bu	ild the De	ecision Tree, with ar	8	CO3	L2
	b	Analyze tł	ne problems	s for the o	decision tree ar	nd its lea	rning.	7	CO3	L4
4	а	How to ap	ply the cond	epts of Ir	nductive bias in	decision	tree learning	7	CO4	L3
	b	Figure ou reduced e		s in deci	sion tree learr	ning Avoi	ding Overfiting with	8	CO4	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

			.	Mod	el Assignme	nt Quest	ions			
Crs C	ode:	15CS73	Sem:	7	Marks:	5	Time:	90 - 120	minute	S
Cours			e Learning							
Note:	Each	student	to answer 2-3	3 assignm	ents. Each a	ssignmer	nt carries equal ma	ark.		
SNo		USN			signment De			Marks	со	Level
1	1 Show the significance of Machine learning by taking differe problem statements								CO1	L2
2			Explain the c Learning syst		onstraints an	nd proble	ms in designing th	e 5	CO1	L2
3			List the Issue	s in Machi	ine Learning				CO2	L1
4			Explain the n	otations th	hat are used	in Conce _l	ot learning.	5	CO2	L2
5							ering to Hypothesis	5	CO2	L3
6							sed for Hypothesis.	5	CO2	L4
7			Analyze the c Representation		Representatic	on for vers	sion space from the	2 5	CO2	L4
8			Illustrate the	example f	for Candidate	e Eliminat	tion algorithm	5	CO2	L3
9			Differentiate I	between u	inbiased and	l biased F	lypothesis.	5	CO2	L2
10			Explain the F Tree, with ar	•		s used to	build the Decision	n 5	CO3	L2
11			Analyze the	oroblems	for the decis	sion tree	and its learning.	5	CO3	L4
12			Discuss the Attribute	Basic de	cision tree	learning	algorithm, with it	s 5	CO3	L2
13			Illustrate Bas Examples	ic decisio	on tree learni	ng algori	ithm Measures wit	h 5	CO3	L3
14			Discuss the learning use				e in decision tre	e 5	CO3	L2
15			Analyze the Examples	hypothes	is space sea	rch in de	cision tree learning	g 5	CO3	L4
16			Explain the R with Approxir		in Inductive	bias of de	ecision tree learning	g 5	CO4	L2

17	Explain the Representation that is used to build the Decision	5	CO4	l2
	Tree, with an example.			
18	Analyze the problems for the decision tree and its learning.	5	CO4	L4
19	Classify Issues in decision tree learning Rules Post Pruning	5	CO4	L4
	Alternative Measures			
20	Explain the Different Attributes	5	CO4	L2
21	Figure out the Issues in decision tree learning Avoiding Overfiting	5	CO4	L4
	with reduced error			

D2. TEACHING PLAN - 2

Module – 3

Title:	Artificial Neural Networks	Appr Time:	11 Hrs
а	Course Outcomes	-	Bloom
-	The student should be able to:	-	Level
1	Analyze the candidate neuron's in Nural networks using power of perceptrons	CO5	L4
2	Analyze the gradient in Artificial Nural Network using Backpropagation algorithm	CO6	L5
b	Course Schedule		
Class No	Module Content Covered	СО	Level
23	Artificial Neural Networks Introduction what is NN and its attributes	CO5	L2
24	Introduction contd Biological Motivation	CO5	L3
25	Neural Network representation	CO5	L3
26	Appropriate problems 1	CO5	L4
27	Appropriate problems 2	CO5	L4
28	Perceptrons represaentation power of perceptrons and the training Rule	CO5	L4
29	PerceptronsGradiant Descent and the Delta Rule, Visualizing the HYPOTHESIS Space	CO6	L5
30	Derivation of the Gradient Descent Rule Stochastic approximation to Gradient Descent		L4
31	Backpropagation algorithm differentiable threshold Unit and its representation	CO6	L4
32	Backpropagation algorithm explanation	CO6	L4
33	Examples of Backpropagation algorithm	CO6	L4
с	Application Areas	со	Level
1	Character recognition	CO5	L3
2	Speech Recognition	CO6	L4
d	Review Questions	-	-
22	Explain NN and its attributes	CO5	L2
22	Explain the problems that arise in Neural Network and its representation	CO5	L2
23	Consider a multilayer feed forward neural network. Enumerate and explain steps in back propagation algorithm use to train network.	CO5	L4
24	What is linear separability issue?	CO5	L2
25	What is the role of hidden layer?	CO5	L2
- 0	How is Multilayer is trained using Bank propagation?	CO5	L4
26		CO6	L5
26 27	How to estimate difference in error between two hypotheses using error D(h) and error S(h)?	000	L5
	and error S(h)? What is Multilayer perception?	CO5	L2
27	and error S(h)? What is Multilayer perception? Explain the Backpropagation algorithm and conclude why it is not likely to be trapped in local minima	CO5 CO6	
27 28	and error S(h)? What is Multilayer perception? Explain the Backpropagation algorithm and conclude why it is not likely to be trapped in local minima Demonstrate the steps involved in Back propagation algorithm?	CO5	L2
27 28 29	and error S(h)? What is Multilayer perception? Explain the Backpropagation algorithm and conclude why it is not likely to be trapped in local minima	CO5 CO6	L2 L4

2		
3		
4		
5		

Module – 4

Title:	Divide and Conquer	Appr Time:	11 Hrs
а	Course Outcomes	-	Bloom
-	The student should be able to:	-	Level
1	Analyze the data sets on Bayes theorem	CO7	L4
2	Analyze the bayes belief network using EM Algorithm	CO8	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
34	Bayesian Learning Introduction	C07	L2
35	Bayes theorem	C07	L2
36	Bayes theorem and concept learning	CO7	L3
37	ML and LS error hypothesis	CO7	L4
38	ML for predicting probabilities	CO7	L4
3.9	MDL principle	CO7	L4
40	Naive Bayes classifier	CO8	L4
41	Bayesian belief networks- classifier Example , Estimating Probabilities	CO8	L4
42	Bayesian belief networks Conditional Independence , Representation , Inference ,	CO8	L4
43	Bayesian belief networksLearning , Gradient	CO8	L4
44	EM Algorithm – Estimating Means of k Gaussians	CO8	L4
45	Derivation of k Means Algorithm	CO8	L4
С	Application Areas	со	Level
1	Medical science: Like predicting a particular disease based on the symptoms and physical condition	CO7	L4
2	Document Classification, Information Retrieval	CO8	L4
d	Review Questions		
32	Explain Bayes theorem	CO7	L2
33	Demonstrate how Machine Learning is used for predicting probabilities	CO7	L3
34	What is Brute Force MAP hypothesis learner?	CO7	L2
35	How Brute Force MAP hypothesis related to Concept Learning? What is the Minimum Description Length (MDL) Principle	CO7	L4
36	Explain how naïve bays algorithm is useful for learning and classifying text.	C07	L4
37	Explain the procedure to estimate difference in error between two learning methods. Consider a learned hypothesis h, for some Boolean concept. When h is tested on a set of 100 examples it classifies 83 correctly what is the standard deviation and 95% confidence interval for the true error rate for error D(h)?		L5
38	Explain Bayesian belief network and conditional independence with example	CO8	L3
39	How is Naïve Bayes algorithm useful for learning and classifying text?	CO8	L4
40	What are Bayesian Belief nets? Where are they used? Can it solve all types of problems?	CO8	L3
41	Describe in brief EM Algorithm	CO8	L2
42	Briefly Explain PAC Hypothesis	CO8	L2
е	Experiences	-	-
1			
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code:	15CS73	Sem:	7	Marks:	30	Time: 75	5 minute	S	
Cour	'se:	Machine L	earning		·					
-	-	Note: Ansv	wer any 2 q	uestions	, each carry e	qual mar	ks.	Marks	СО	Level
1	а	Explain NI	N and its att	ributes				05	CO5	L2
	b	Explain the	e problems	l its representation	05	CO5	L2			
	С	What is Mu	ultilayer per	05	CO5	L2				
2	a What is linear separability issue? And What is the role of hidden layer?							07	CO5	L2,L2
	b		Consider a multilayer feed forward neural network. Enumerate and explain steps in back propagation algorithm use to train network.							L4
3	а	Explain Ba	yes theorer	n				5	C07	L2
	b	Demonstra	ate how Ma	chine Lea	arning is used	for predic	cting probabilities	5	CO7	L3
	С	What is Br	ute Force M	1AP hypo	thesis learner	?		5	CO7	L2
4	a	learning n concept. N correctly N	nethods. Co When h is	onsider a tested o standard	learned hypo n a set of 10 deviation and	othesis h, 00 examp	error between two for some Boolean ples it classifies 8 nfidence interval fo	ר 3	CO8	L5
	b	What are E types of pi		elief nets?	' Where are th	ey used?	Can it solve all	6	CO8	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

			<u> </u>	Mc	del Assignme	nt Questions	S			
Crs C	ode:	15CS73	Sem:	7	Marks:	5 / 10	Time:	90 – 120 minutes		
Cours	-		e Learning							
Note:	Each	student	to answer 2-3	assign	ments. Each as	ssignment c	arries equal m	ark.		
SNo	V I							Marks	СО	Level
1			Explain NN a					5	CO5	L2
2			Explain the prepresentation	Network and i	ts 5	CO5	L2			
3	Consider a multilayer feed forward neural network. Enumerate and explain steps in back propagation algorithr use to train network.								CO5	L4
4			What is linear	r separa	ability issue?			5	CO5	L2
5	What is the role of hidden layer?						5	CO5	L2	
6			How is Multilayer is trained using Bank propagation?					5	CO5	L4
7				ow to estimate difference in error between two hypotheses sing error D(h) and error S(h)?						L5
8			What is Multi	layer p	erception?			5	CO5	L2
9					pagation algor ed in local mini		onclude why it	is 5	CO6	L4
10			Demonstrate algorithm?	the ste	eps involved in	Back propa	gation	5	CO6	L3
11			Why a Multila	ayer ne	ural network is	required?		5	CO6	L4
12			Explain Bayes	s theore	em			5	CO7	L2
13			Demonstrate probabilities	how I	Machine Learr	ning is used	d for predictin	ig 5	CO7	L3
14			What is Brute	Force	MAP hypothes	sis learner?		5	CO7	L2
15					MAP hypoth the Minimum				CO7	L4

16	Explain how naïve bays algorithm is useful for learning and classifying text.	5	C07	L4
17	Explain the procedure to estimate difference in error between two learning methods. Consider a learned hypothesis h, for some Boolean concept. When h is tested on a set of 100 examples it classifies 83 correctly what is the standard deviation and 95% confidence interval for the true error rate for error D(h)?	5	CO8	L5
18	Explain Bayesian belief network and conditional independence with example	5	CO8	L3
19	How is Naïve Bayes algorithm useful for learning and classifying text?	5	CO8	L4
20	What are Bayesian Belief nets? Where are they used? Can it solve all types of problems?	5	CO8	L3
21	Describe in brief EM Algorithm	5	CO8	L2
22	Briefly Explain PAC Hypothesis	5	CO8	L2

D3. TEACHING PLAN - 3

Title:	Divide and Conquer	Appr Time:	11 H
a	Course Outcomes	-	Bloor
-	The student should be able to:	-	Leve
1	Evaluate the Artificial Nural Network based on the Learning algorithm	CO9	L5
2			
b	Course Schedule		
lass No	D Module Content Covered	со	Leve
46	Motivation, Estimating hypothesis accuracy,	CO9	L4
47	Basics of sampling theorem, General approach for deriving confidence intervals	CO9	L4
48	Difference in error of two hypothesis	CO9	L5
49	Comparing learning algorithms	CO9	L2
50	Instance Based Learning Introduction	CO9	L5
51	k-nearest neighbor learning, locally weighted regression	CO9	L5
52	radial basis function,	CO9	L5
53	cased-based reasoning	CO9	L5
54	Reinforcement Learning Introduction,	CO9	L6
55	Learning Task	CO9	L6
	Q Learning	CO9	L6
	Q Learning	CO9	L6
с	Application Areas	со	Leve
1	Image Processing Evaluation based on particular disease	COg	L6
2			
d	Review Questions	-	-
46	Describe k-nearest neighbor algorithm. Why is it called instance based learning?	CO9	L3

47	Describe these terms in brief PAC Hypothesis	COg	L3
48	Describe these terms in brief Mistake bound model of learning	CO9	L3
49	Describe in brief Lazy and eager learning	CO9	L3
50	Explain salient features of a Genetic Algorithm. Describe basic genetic algorithm using all the necessary steps of fitness function evaluation	CO9	L2,L3
51	Describe in brief Crossover & mutation	CO9	L3
52	Describe k-nearest neighbor algorithm. Why is it called instance based learning?	CO9	L3
53	Describe the method of learning using Locally weighted linear regression	CO9	L3
54	Describe k-nearest neighbor learning algorithm for continuous valued target functions. Discuss one major drawback of this algorithm and how is can be corrected	CO9	L3
55	Write the FOIL algorithm for learning rule sets and explain the purpose of outer loop and the function of the inner loop	CO9	L4
56	What is reinforcement learning	CO9	L2
57	Explain the Q function and Q learning algorithm	CO9	L3
58	Compare inductive learning and analytical learning	CO9	L5
e	Experiences	-	-
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code:	15CS73	Sem:	7	Marks:	30	Time:	75 minute	es	
Cour	rse:	Machine Learning								
-	-	Note: Ans	wer any 2 c	luestions	, each carry eq	ual ma	rks.	Marks	СО	Level
1	а	Describe learning?	k-nearest n	eighbor a	algorithm. Why	is it ca	Illed instance ba	sed 05	CO9	L3
	b	Describe t	hese terms	05	CO9	L3				
	С	Describe t	05	CO9	L3					
2	а	Explain sa algorithm	10	CO9	L2,L3					
	b	Describe i	n brief Cros	sover & n	nutation			05	CO9	L3
3		Describe k-nearest neighbor learning algorithm for continuous valued target functions. Discuss one major drawback of this algorithm and how is can be corrected							CO9	L3
	b				arning rule sets the inner loop	s and ex	plain the purpose	e of 07	CO9	L3
4	а	Explain the	e Q functior	n and Q le	earning algorith	m		08	COg	L3
	b				d analytical lea			07	CO9	L5
	С									

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions												
Crs Co	ode:	15CS73	Sem:	7	Marks	5		Time		90 – 120 minutes			
Cours	Course: Machine Learning												
Note:	Each	student t	o answer	2-3 assignr	nents. Eacl	n assignme	nt carr	ies eo	qual ma	ark.			
SNo	l	JSN		Assignment Description						Marks	СО	Level	
1			Describe	k-nearest	neighbor	algorithm.	Why	is it	calle	d 5	CO9	L3	

	instance based learning?			
2	Describe these terms in brief PAC Hypothesis	5	CO9	L3
3	Describe these terms in brief Mistake bound model of learning	5	CO9	L3
4	Describe in brief Lazy and eager learning	5	CO9	L3
5	Explain salient features of a Genetic Algorithm. Describe basic genetic algorithm using all the necessary steps of fitness function evaluation	5	CO9	L2,L3
6	Describe in brief Crossover & mutation	5	CO9	L3
7	Describe k-nearest neighbor algorithm. Why is it called instance based learning?	5	CO9	L3
8	Describe the method of learning using Locally weighted linear regression	5	CO9	L3
9	Describe k-nearest neighbor learning algorithm for continuous valued target functions. Discuss one major drawback of this algorithm and how is can be corrected	5	CO9	L3
10	Write the FOIL algorithm for learning rule sets and explain the purpose of outer loop and the function of the inner loop	5	COg	L4
11	What is reinforcement learning	5	CO9	L2
12	Explain the Q function and Q learning algorithm	5	CO9	L3
13	Compare inductive learning and analytical learning	5	CO9	L5

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Machine Learning	g				Month /	′ Year	Dec /2	2018
Crs Code:		15CS73 Se	em:	7	Marks:	80	Time:		180 m	inutes
-	Note	Answer all FIVE full questions. All questions carry equal marks.						Marks	СО	Level
1	a	What are the important objectives of Machine Learning? Discuss important						6	CO1	L1
		examples of Machine Learning								
	b	Explain the different constraints and problems in designing the Learning						8	CO1	L2
		system								
	С	List the Issues in Machine Learning							CO1	L1
					or					
2	-	Analyze whether I		<u> </u>	1			8	CO2	L4
	b	Analyze the comp	pact Rep	presentat	tion for version s _l	oace from t	the	8	CO2	L4
		Representation								
3		Explain the Repre	esentati	on that is	s used to build t	he Decisio	n Tree, with an	8	CO3	L2
		example.								
	b	b Analyze the problems for the decision tree and its learning.					8	CO3	L4	
					or					
4		How to apply the						8	CO4	L3
	b	Figure out the Is	ssues ir	n decisio	on tree learning	Avoiding	Overfiting with	8	CO4	L4
		reduced error								
		<u> </u>							00-	
5	a	Explain NN and in						05	CO5	L2
		Explain the probl			n Neural Netwoi	rk and its re	epresentation	06	CO5	L2
	С	What is Multilaye	er perce	ption?				05	CO5	L2
					Or			0	005	
6		What is linear ser						08	CO5	
-	b	Consider a multil						08	CO5	L4
		explain steps in b	back pro	pagatio	n algorithm Use	to train net	.work.			
									<u> </u>	
7		Explain Bayes the				a va ali ativa		5	CO7	L2
	-	Demonstrate how				breakting	orobabilities	6	CO7	L3
	С	What is Brute Fo	rce MAł	- nypoth				5	CO7	L2
					or					

8	а	Explain the procedure to estimate difference in error between two learning methods. Consider a learned hypothesis h, for some Boolean concept. When h is tested on a set of 100 examples it classifies 83 correctly what is the standard deviation and 95% confidence interval for the true error rate for error D(h)?	10	CO8	L5
	b	What are Bayesian Belief nets? Where are they used? Can it solve all types of problems?	6	CO8	L3
9	а	Describe k-nearest neighbor algorithm. Why is it called instance based learning?	06	CO9	L3
	b	Describe these terms in brief PAC Hypothesis	05	CO9	L3
	С	Describe these terms in brief Mistake bound model of learning	05	CO9	L3
		or			
10	а	Explain salient features of a Genetic Algorithm. Describe basic genetic algorithm using all the necessary steps of fitness function evaluation	10	CO9	L2,L3
	b	Describe in brief Crossover & mutation	06	CO9	L3
	d	Analyze precisely the computing time and space requirements of this new version of Prim's algorithm using adjacency lists.			

2. SEE Important Questions

Cour			VE AND ANTI	ENNAS			Month	/ Year	May /	2018
Crs C	ode:	15EC71	Sem:	7	Marks:	80	Time:		180 m	inutes
	Note	Answer all	FIVE full que	stions. All qu	lestions carry e	qual marks.		-	-	
Mod	Qno.	Important (Question					Marks	со	Year
ule										
										1
										+
										+
										+
										+
										+
										+

G. Content to Course Outcomes

1. TLPA Parameters

	Table 1: TLPA			<u> </u>			
Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	Teachin		Bloo	Action	on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#	l I		for	Leve	Learning	for	Learning
	l I		Content	l		Learning	
A	В	С	D	Ε	F	G	Н
1	Introduction: Well posed learning problems,	5	- L2	L4	-	-	- Slip Test
	Designing a Learning system, Perspective and		- L4		-	Lecture	-
	Issues in Machine Learning.					-	-
						-	
1	Concept Learning: Concept learning task,	6	- L2	L4	-	-	-
	Concept learning as search, Find-S algorithm,		- L4		-	Lecture	Assignment
	Version space, Candidate Elimination					- Tutorial	.–
	algorithm, Inductive Bias.					-	-
2	Decision Tree Learning: Decision tree	5	- L2	L3	-	-	-
	representation, Appropriate problems for		- L3		-	Lecture	Assignment
	decision tree learning, Basic decision tree					-	-
	learning algorithm						
2	hypothesis space search in decision tree	6	- L3	L3	-	-	- Slip Test
	learning, Inductive bias in decision tree				-	Lecture	-
	learning, Issues in decision tree learning.					-	
3	Artificial Neural Networks: Introduction,	5	- L2	L4	-	-	- Slip Test
	Neural Network representation		- L4		-	Lecture	-
						-	
3	Appropriate problems, Perceptrons,	6	- L2	L4	-	-	-
	Backpropagation algorithm.		- L4		-	Lecture	Assignment
						- Tutorial	.–
						-	_
4	Bayesian Learning: Introduction, Bayes	5	- L3	L5	-	-	-
	theorem, Bayes theorem and concept		- L5		-	Lecture	Assignment
	learning					- Tutorial	.—
						-	_
	ML and LS error hypothesis, ML for predicting		- L2	L4	-	-	-
	probabilities, MDL principle, Naive Bayes		- L4		-		Assignment
	classifier, Bayesian belief networks, EM					- Tutorial	.–
	algorithm					-	-
	Evaluating Hypothesis: Motivation, Estimating		- L5	L5	-	-	-
	hypothesis accuracy, Basics of sampling				-	Lecture	Assignment
	theorem, General approach for deriving					-	-
	confidence intervals, Difference in error of					-	-
	two hypothesis, Comparing learning						
	algorithms.						
	Instance Based Learning: Introduction, k-						
	nearest neighbor learning, locally weighted						
	regression, radial basis function, cased-based						
	reasoning,						
	Reinforcement Learning: Introduction,						
	Learning Task, Q Learning.						

Table 1: TLPA – Example Course

2. Concepts and Outcomes:

Table 1: Concept to Outcome – Example Course

					-	
Mo dul	Learning or Outcome	Concepts	Final Concept	Justification	CO Components (1.Action Verb,	Course Outcome
e- #	from study of the Content or Syllabus	from Content		(What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Student Should be able to
A	1	J	K		М	N
1	-	-	Classification of Machine Language.	-Choose the learning techniques	-Analyze	classify the Artificial Intelligence problem's for Machine Leaning
1	-	-	Category Learning.	-examine the concept learning	-Analyze - Candidate Algorithm	Analyze the Category learning using candidate algorithm
2	-	-	Objects	Identify the characteristics of decision tree and solve problems associated with	-Apply - statistics -decision tree	Apply the fundamentals of statistics based on the Decision Tree Learning
2	-	-		-Apply different data sets on inductive bias mdeling	-Apply -data set - inductive bias modeling	Apply the data set on hypothesis space using Inductive bias modeling
З	-	-	Neural Network	Apply effectively neural networks for appropriate applications	-Analyze -candidate neuron's -neural networks	Analyze the candidate neuron's in Neural networks using power of perceptrons
3	-	-	5	-Analyze the different errors on objects using back propogation	-Analyze -backpropagation algorithm	Analyze the gradient in Artificial Nural Network using Backpropagation algorithm
4	-	-	objects.	different data sets	- examine bayes theorem	Analyze the data sets on Bayes theorem
4	-	-	Hypothesis.	- derive effectively learning rules using EM alogirthm		Analyze the bayes belief network using EM Algorithm
5	-	-	the Dependencie s	Evaluate hypothesis and investigate instant based learning and reinforced learning	-Evaluate - Neural networks -Learning algorithm	Evaluate the Artificial Neural Network based on the Learning algorithm